
243

Constructive Consistent Approximations in Pairwise Comparisons

Ryszard Smarzewski1, Ryszard Kozera2,3*

1 Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 
2, 00-908 Warsaw, Poland

2 Institute of Information Technology, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 
02-776 Warsaw, Poland

3 School of Physics, Mathematics and Computing, The University of Western Australia, 35 Stirling Highway, 
Crawley, W.A. 6009 Perth, Australia

* Corresponding author’s e-mail: ryszard kozera@sggw.edu.pl; ryszard.smarzewski@wat.edu.pl

ABSTRACT
In this paper we investigate groups which admit the existence of weighted consistent approximations for pairwise 
comparisons matrices. These approximations are defined by extending the classical matrix projection for R+ to 
abstract weighted projections on the non-linear sets of transitive group-valued matrices. It is of interest that all 
of them are represented by general explicit formulae dependent on an abstract logarithmic function. This general 
approach is applied to the groups Zp and F2m m which are of fundamental importance in cryptography. Finally, we 
use our unified mathematical model of pairwise comparisons for continuous one-parameter unitary groups, which 
play a fundamental role in physics.

Keywords: cryptography, computer science, applied mathematics

Advances in Science and Technology Research Journal 2022, 16(4), 243–255
h� ps://doi.org/10.12913/22998624/153086
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology 
Research Journal

Received: 2022.07.22
Accepted: 2022.08.23
Published: 2022.09.01

243

Constructive Consistent Approximations in Pairwise Comparisons

R. Smarzewski1 and R. Kozera2,3

1 Institute of Mathematics and Cryptology, Cybernetics Faculty,
Military University of Technology,

S. Kaliskiego 2, 00-908 Warsaw, Poland
ryszard.smarzewski@wat.edu.pl

2 Warsaw University of Life Sciences - SGGW
Institute of Information Technology

Ul. Nowoursynowska 159, 02-776 Warsaw, Poland
ryszard kozera@sggw.edu.pl

3 The University of Western Australia
Faculty of Engineering and Mathematical Sciences,

35 Stirling Highway, Crawley, W.A. 6009 Perth, Australia
ryszard.kozera@gmail.com

Abstract

In this paper we investigate groups which admit the existence of weighted consistent approximations
for pairwise comparisons matrices. These approximations are defined by extending the classical matrix
projection for R+ to abstract weighted projections on the non-linear sets of transitive group-valued
matrices. It is of interest that all of them are represented by general explicit formulae dependent on an
abstract logarithmic function. This general approach is applied to the groups Z∗

p and F∗
2m which are of

fundamental importance in cryptography. Finally, we use our unified mathematical model of pairwise
comparisons for continuous one-parameter unitary groups, which play a fundamental role in physics.

INTRODUCTION

The consistent approximation plays fundamental role in the pairwise comparisons theory and its ap-
plications, cf. Saaty [1, 2], Laarhoven and Pedrycz [3], Koczkodaj and Or lowski [4], Cavallo and Brunelli
[5], Farkas et al. [6], Koczkodaj and Szarek [7], Holsztyński and Koczkodaj [8], Koczkodaj and Szwarc
[9], Koczkodaj et al. [10], Smarzewski and Rutka [11] and other references therein. According to [1, 3, 4]
a consistent projection is defined, for the multiplicative group of positive real and triangular fuzzy numbers,
as a composition of additively and multiplicatively invariant matrix mappings. On the other hand, in view
of important applications of the pairwise comparisons not only in biology, cryptography and physics, but
also in psychology [2], it would be interesting to characterize groups, which admit consistent projections.
We note that such attempt has been recently done by Wajch [13]. However, several attempts to define a
useful consistent approximation in an abstract setting have not been satisfactorily accomplished until now.
An assessment of the latter is discussed in a recent work [14].

In this paper we present a class of groups that admit the existence of non-trivial consistent projections.
In doing so, in the next section we give conditions that such groups should satisfy and discuss their prop-
erties. Among them the most restrictive and important postulate refers to the existence of appropriate
logarithmic and exponential functions. As shown in two sections (Consistent Matrices in Pairwise Compar-
isons and Abstract Consistent Projections) it is hard to overestimate the influence of abstract logarithms
on the generic properties of consistent approximations not only of multiplicative but also of additive type.
In addition, both sections in question shed light why the theory of pairwise comparisons is not applicable
to every group [13].

The class of abstract logarithmic functions includes the discrete logarithms defined for every cyclic mul-
tiplicative group. Therefore, it is possible to derive in Abstract Consistent Projections section the explicit
formulae for the weighted consistent projections of reciprocal matrices with entries in the multiplicative
groups Z∗

p = {1, 2, . . . , p−1} of remainders modulo a prime number p. In the next section to Abstract Con-
sistent Projections section we establish results of this kind for multiplicative groups F∗

2m = Z2[x]/wm(x) of
all non-trivial polynomials over Z2 = {0, 1} modulo a fixed primitive polynomial wm(x) of degree m with
coefficients in the field Z2. This suggests that modular consistent projections may become a useful tool
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We note that such attempt has been recently done by Wajch [13]. However, several attempts to define a
useful consistent approximation in an abstract setting have not been satisfactorily accomplished until now.
An assessment of the latter is discussed in a recent work [14].
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In doing so, in the next section we give conditions that such groups should satisfy and discuss their prop-
erties. Among them the most restrictive and important postulate refers to the existence of appropriate
logarithmic and exponential functions. As shown in two sections (Consistent Matrices in Pairwise Compar-
isons and Abstract Consistent Projections) it is hard to overestimate the influence of abstract logarithms
on the generic properties of consistent approximations not only of multiplicative but also of additive type.
In addition, both sections in question shed light why the theory of pairwise comparisons is not applicable
to every group [13].

The class of abstract logarithmic functions includes the discrete logarithms defined for every cyclic mul-
tiplicative group. Therefore, it is possible to derive in Abstract Consistent Projections section the explicit
formulae for the weighted consistent projections of reciprocal matrices with entries in the multiplicative
groups Z∗

p = {1, 2, . . . , p−1} of remainders modulo a prime number p. In the next section to Abstract Con-
sistent Projections section we establish results of this kind for multiplicative groups F∗

2m = Z2[x]/wm(x) of
all non-trivial polynomials over Z2 = {0, 1} modulo a fixed primitive polynomial wm(x) of degree m with
coefficients in the field Z2. This suggests that modular consistent projections may become a useful tool to

to design new algorithms and protocols not only for the computer supported pairwise comparisons, but
also for data origin authentication of messages M in cryptography (see e.g. Durnoga and Pomyka�la [15]).
Finally, we notice that the groups Z∗

p and F∗
2m already play the central role in several fields of computer

science such as e.g. cryptography, processing information, discrete Fourier analysis, coding theory, data
storage, modular operations or programming languages. An interested reader may also find some related
work in Durnoga and Źra�lek [16].

Finally, the second last section is an application of the previous sections to develop pairwise comparisons
for one parameter unitary groups U : R → B(H) in the algebra of all bounded linear operators from a
Hilbert space H into itself. The results presented there demonstrate the power of functional calculus
in designing our model of pairwise comparisons, which is based on using the abstract logarithms. In
this model, we construct first an auxiliary additive consistent projection of an antisymmetric matrix
[logU(αkj)]n×n onto the group An(L) of all additively consistent matrices with entries in L = logU(R).
In sequel, we use the abstract exponential function to derive a multiplicative consistent projection of a
reciprocal matrix M = [mkj ]n×n with entries mkj = U(αkj) onto the group Mn(K) of all multiplicatively
consistent matrices T = [tkj ]n×n with entries in K = U(R).

DEFINITIONS AND PRELIMINARIES

A classical concept of pairwise comparisons can be formulated for an algebra A with identity such
that A is also an ordered vector space over a field F of real numbers. It means that an order relation
≤ is defined on A, which is reflexive, transitive and invariant with respect to the operations of addition
and multiplication by non-negative scalars in F, but not necessarily antisymmetric [17]. In this paper we
assume that the order relation is defined on the algebra A by the formula

x ≤ y if and only if y − x ∈ A+,

where A+ ⊃ {0, 1} is a wedge (a cone) of positive elements in A with vertex 0 and identity 1. For the
simplicity such an algebra A will be called ordered.

In the theory of pairwise comparisons there are considered two groups K and L in A: K of multiplicative
type and L ⊂ A of additive type. It should be noticed that all pairwise comparisons problems are originally
stated for the multiplicative group K. Since these problems are extremely hard to solve even by computers
[1], [3], [4], [10] and [11], they are approximated by additive projections onto L-valued consistent matrices,
which are eventually transformed by using abstract exponential functions.

Definition 1. Two multiplicative and additive groups K and L in an ordered algebra A are said to be
logarithmically homeomorphic, if there exists a collection:

Φ(K,L) = {ϕβ : β ∈ G(K)}

of homeomorphisms ϕβ : K → L, which have the following properties:

ϕβ(xy) = ϕβ(x) + ϕβ(y), (1)

and
ϕβ(ϕ

−1
α (x)) = xϕβ(α), (2)

for all x, y ∈ K and α, β ∈ G(K). The homeomorphisms ϕβ will be called abstract logarithms.

Remark 1. If ϕ is an abstract logarithm in Φ(K,L) then it follows from Definition 1 that the inverse
mapping ϕ−1 of L onto K has the property:

ϕ−1(u+ v) = ϕ−1(u)ϕ−1(v),

for all u, v ∈ L. Hence the addition in L satisfies the formula:

u+ v = ϕ[ϕ−1(u)ϕ−1(v)].
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Example 1. The concept of classical pairwise comparisons (see [1], [5], [11] and [18]) in R is characterized
by the following pre-assumptions:

A = F = R, A+ = [0,+∞), K = (0,+∞), L = R,
G(K) = {β : β > 0, β �= 1}, Φ(K,L) = {logβ(x) : β ∈ G(K)}.

Note that now condition (2) coincides with the well-known formula

logβ(α
u) = u logβ α.

Example 2. Consider the finite field Zp = {0, 1, . . . , p−1} in which operations of addition and multiplication
modulo a prime number p > 2 are introduced. It is clear that Zp becomes an algebra if we set F = Zp. In
this case we propose to choose:

A = F = A+ = Zp, K = Z∗
p = {1, 2, . . . , p− 1}, L = Zp−1,

Φ(K,L) = {logβ(x) : β ∈ G(Z∗
p)},

where Zp−1 = {0, 1, . . . , p− 2} is the additive group, under the operation of addition (x+ y)(mod (p− 1)),
the set

G(Z∗
p) = {β ∈ Z∗

p \ {1} : β ≡ βp(mod p)}

consists of all generators of the multiplicative group Z∗
p of positive remainders modulo p and ϕβ(x) = logβ x

denotes the discrete logarithm of x ∈ Z∗
p to the base β which is the unique integer y, 0 ≤ y ≤ p− 2, such

that βy ≡ x mod p (see [19]). In particular, if we take β = 10 in the set G(Z∗
19) = {2, 3, 10, 13, 14, 15} of all

generators of the multiplicative group Z∗
19, then the elements of additive group Z18 of discrete logarithms

y = log10 x are as listed in the second row of Table 1. A simple inspection shows that the discrete logarithm
y = log10 x is an homeomorphism between the multiplicative group Z∗

19 of remainders modulo 19 and the
additive group Z18 of remainders modulo 18. In particular for x = 7 and y = 16 we have:

log10(xy) = log10 112 ≡ log10 17 (mod 19) = 8

and also
log10 x+ log10 y = 12 + 14 ≡ 8 (mod 18).

Table 1. Discrete logarithms y = log10 x in the group Z∗
19.

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

y 0 17 5 16 2 4 12 15 10 1 6 3 13 11 7 14 8 9

Remark 2. The finite fields Zp and multiplicative groups Z∗
p are fundamental in applied cryptography.

Additionally, in modern applied cryptography a vital role is also played by cyclic groups of rational points
on elliptic curves, c.f. Menezes et al. [19], Husemöller [20] and Washington [21]. Consequently, it would
be interesting to investigate the concept of consistent approximation in cyclic groups. In the preliminary
step, we address below the latter for the multiplicative groups F∗

2m .

Remark 3. Note that the condition (2) from Def. 1

logβ(a
x) = x logβ α,

remains true for discrete logarithms. For example, if α = 14, β = 10 and x = 8, then upon resorting to
Table 1 a simple verification yields:

logβ(α
x) = log10(14

8) ≡ log10 4 (mod 19) = 16

and
x logβ α = 88 ≡ 16 (mod 18).
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CONSISTENT MATRICES IN PAIRWISE COMPARISONS

As in previous section we suppose that K is a multiplicative and L is an additive group in an ordered
algebra A over a field F having identity 1 and wedge A+ = {x ∈ A : x ≥ 0} ⊃ {0, 1}. In order to formulate
the concept of real consistent approximations (cf. e.g. [4], [10] and [1]) in an abstract setting, let Kn×n be
the set of all K-valued matrices M = [mij ]

n
i.j=1 with entries in a multiplicative group K. Then Kn×n is

a multiplicative matrix group under the operation of pointwise multiplication of matrices M = [mij ] and
X = [xij ]:

[mij ] · [xij ] = [mijxij ].

The identity in Kn×n is matrix E = [eij ] with all entries eij = 1. Similarly, we define the additive group
Ln×n of matrices over an additive group L. In this case the matrix operation is defined by the formulae

[aij ] + [bij ] = [aij + bij ].

Moreover, let Mn×n = Mn×n(K) be the subset of reciprocal K-valued matrices M = [mij ] for which
mii = 1 and

mijmji = 1 for every i, j = 1, 2, . . . , n. (3)

These matrices are called abstract PC matrices. If an abstract PC matrix M = [mij ] satisfies in addition
the condition of transitivity:

mikmkj = mij , whenever 1 ≤ i < k < j ≤ n, (4)

then such M is called as consistent. At this point we note that the concept of multiplicative consistency
should not be identified with its dual analogue of the abstract additive consistency. Indeed, the latter
is defined for the additive matrix group An×n = An×n(L), which consists of all antisymmetric matrices
A = [aij ] with entries in the additive group L. More specifically, a matrix A = [aij ] ∈ An×n is called
additively consistent if it satisfies the following condition:

aik + akj = aij , whenever 1 ≤ i < k < j ≤ n. (5)

From now on we denote the subgroups of Kn×n containing all multiplicative and additive consistent
matrices by the following symbols Mn = Mn(K) and An = An(L).

Theorem 1. If K and L are logarithmically homeomorphic groups, then the groups:

(a) Mn×n(K) and An×n(L) of reciprocal matrices

(b) Mn(K) and An(L) of consistent matrices

are also logarithmically homeomorphic. Moreover, each matrix logarithm ϕ has the form

ϕ(M) = [ϕ(mij ]n×n,

where M = [mij ]n×n and ϕ(mij) is an abstract logarithm of mij.

Proof. If matrix M = [mij ] is reciprocal, it follows from Definition 1 that the matrix A with entries
aij = ϕ(mij) satisfies

aij + aji = ϕ(mijmji) = ϕ(1) = 0.

Hence it is antisymmetric. If in addition M is consistent, then the condition of transitivity yields

aij = ϕ(mij) = ϕ(mikmkj) = ϕ(mik) + ϕ(mkj) = aik + akj .

This completes the proof.
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Example 3. The inverses of elements in Z∗
p can be easily computed by the extended Euclidean algorithm

[19]. However, if p is small, then it is preferable to use a corollary to Fermat’s theorem, which states that
the inverse to βk is equal to βp−1−k, where β is a generator of Z∗

p and k = 0, 1, . . . , p− 1. For the special
case of p = 19, all inverses are listed in Table 2, which determines the following positive matrix:

M =



1 4 11 12
5 1 17 9
7 9 1 7
8 17 11 1




as reciprocal. However, in view of the identities m12m24 ≡ 4 (mod 19) and m14 = 12, the matrix M is not
consistent. On the other hand, the congruence 4 · 17 ≡ 11 (mod 19) shows that the following sub-matrix:

M1 =



1 4 11
5 1 17
7 9 1




is multiplicatively consistent.

Table 2. Inverses in the multiplicative group Z∗
19.

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x−1 1 10 13 5 4 16 11 12 17 2 7 8 3 15 14 6 9 18

ABSTRACT CONSISTENT PROJECTIONS

According to [1, 4, 10, 12] the classical pairwise comparisons theory is based on the approximation of
inconsistent matrices by consistent projections. This approach can be extended to groups Mn = Mn(K)
and An = An(L) of consistent matrices as specified below. For this purpose we note that their elements
have the following canonical representations (with products xy−1 ∈ K written as ratios x/y)

Lemma 1. If M = [mij ] ∈ Mn and A = [aij ] ∈ An then:

(a) mij = ti/tj, where t1 ∈ K is arbitrary and tj = t1/m1j ∈ K, for every j = 2, 3, . . . , n;

(b) aij = si − sj, where s1 ∈ ϕ(K) is arbitrary and sj = s1 − a1j ∈ ϕ(K), for every j = 2, 3, . . . , n.

Proof. Since t1 ∈ K and m1j ∈ K it follows that tj = t1/m1j ∈ K. Hence an easy induction applied to
subsequent rows of the multiplicatively consistent matrix M finishes the proof of statement (a):

mij =
mi−1,j

mi−1,i
=

ti−1/tj
ti−1/ti

=
ti
tj
, 1 < i, j ≤ n.

Finally, Theorem 1 and (1) applied to (a) yields:

aij + sj = ϕ(mij) + ϕ(tj) = ϕ(ti) = si,

where aij = ϕ(mij) and sj = ϕ(tj).

Example 4. The canonical multiplicative and additive representations [ti/tj ] and [si− sj ] of the consistent
matrices M1 and A1 = log10(M1) (see Example 3) are congruent to:

M1 =



1 4 11
5 1 17
7 9 1


 ≡



1 1

5
1
7

5
1 1 5

7
7
1

7
5 1


 (mod 19)
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and

A1 =




0 16 6
2 0 8
12 10 0


 ≡




0 −2 −12
2 0 −10
12 10 0


 (mod 18).

Indeed, if we take t1 = 1 and s1 = 0 then by Table 1 we obtain:

t2 = t1/m12 ≡ 5 (mod 19), t3 = t1/m13 ≡ 7 (mod 19),

s2 = s1 − a12 = −16 ≡ 2 (mod 18), s3 = s1 − a13 ≡ 12 (mod 18).

Noticeably, both canonical representations of consistent matrices from Mn = Mn(K) and An = An(L)
are useful in theory of the abstract consistent approximation. Similarly as in the classical case, one relies
here on consistent projections Qn = Q2

n of Mn×n ⊂ Kn×n onto Mn which are used in turn to approximate
abstract PC matrices M ∈ Mn×n by their consistent images Qn(M). Now we introduce a new general
concept of weighted consistent projections. In contrast to the classical case, we will not investigate the
influence of positive weights (�i)

n
i=1 ∈ L on topological properties of these projections. It should be

noticed that the sum �1 + �2 + · · ·+ �n of weights may be equal to zero in the case, whenever L is a field
of characteristic greater than 0.

Definition 2. Let ϕ be an homeomorphism between logarithmically homeomorphic groups K and L. Let
(�i)

n
i=1 be a vector of weights in L = ϕ(K) such that � and �i/� are not equal to zero. Then we define

mapping Qn : Mn×n(K) → Mn(K) by the formula:

Qn(M) = ϕ−1(Pn(ϕ(M))) = [ti/tj ], M = [mij ] ∈ Mn×n(K),

where Pn : An×n(L) → An(L) is a mapping such that

Pn(ϕ(M)) = [si − sj ], si =

n∑
j=1

�j
�
ϕ(mij) and ti = ϕ−1(si).

The mappings Qn and Pn are said to be consistent.

Lemma 2. The consistent mappings Qn and Pn are additive and multiplicative projections onto An(L)
and Mn(K), respectively.

Proof. If X = [xij ] ∈ Mn×n(K) and M = [mij ] ∈ Mn×n(K) then we can apply Definitions 2 and 1 to
obtain:

Qn(X ·M) = ϕ−1(Pn(ϕ(X ·M)))

= ϕ−1

([ n∑
k=1

ρk
�
(ϕ(xikmik)− ϕ(xjkmjk))

]n
i,j=1

)

= ϕ−1(Pn(ϕ(X)) + Pn(ϕ(M))) = Qn(X) ·Qn(M),

guaranteeing that Qn is multiplicative projection and Pn is additive projection. Indeed, the latter follows
from:

Q2
n(M) = Qn

[
ϕ−1(Pn(ϕ(M)))

]
= ϕ−1[Pn(Pn(ϕ(M)))]

= ϕ−1

([ n∑
k=1

�k
�
(si − sj)

]n
i,j=1

)
= ϕ−1(Pn(ϕ(M))) = Qn(M).

The case of K = Z∗
p and L = Zp−1 coupled with Definition 2 and Lemma 2 leads to:

Theorem 2. Let β be a generator of the multiplicative group Z∗
p = {1, 2, . . . , p−1} of positive remainders

modulo a prime number p and let ϕ(x) = logβ x denote the discrete logarithm of x ∈ Z∗
p to the base β. If

(�i)
n
i=1 are non-zero weights in Zp−1 such that

∑n
i=1 �i ≡ 1 (mod (p−1)), then ingredients T = [ti/tj ] ∈ Mn
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and S = [si − sj ] ∈ An of the consistent projections Pn(logβ M) = S and Qn(M) = T = βS ∈ Mn satisfy
the following formulae:

si =

n∑
j=1

�j logβ mij ∈ Zp−1 and ti = βsi =

n∏
j=1

(mij)
�j ∈ Z∗

p,

for every matrix M = [mij ] ∈ Mn×n and i = 1, 2 . . . , n.

Proof. The first formula is a direct consequence of Definition 2 for ϕ(x) = logβ x and K = Z∗
p. Therefore,

one can apply Remark 3 and (2) in order to obtain:

βsi = β
∑n

j=1 logβ((mij)
�j ) =

n∏
j=1

(mij)
�j ,

which in turn completes the proof.

Example 5. Suppose that K = Z∗
19, β = 10, n = 3, �1 = �2 = �3 = 3−1 ≡ 13 (mod 18) and

M =



1 11 12
5 1 9
8 17 1


 .

Visibly, it follows from the congruence 11 · 9 ≡ 4 (mod 19) �= 12 that the reciprocal matrix M is not
multiplicatively consistent. Upon combining Theorem 2 with Table 1 and Table 2 one arrives at:

s1 = 13(log10 11 + log10 12) = 117 ≡ 9 (mod 18),

s2 = 13(log10 5 + log10 9) = 156 ≡ 12 (mod 18),

s3 = 13(log10 8 + log10 17) = 299 ≡ 11 (mod 18).

Consequently as s1−s2 = −3 ≡ 15 (mod 18), s1−s3 ≡ 16 (mod 18) and s2−s3 ≡ 1 (mod 18), the additive
consistent projection P3(logβ M) of M onto A3 is equal to:

S =



0 15 16
3 0 1
2 17 0


 .

In order to compute ti = 10si one can use Table 1 to obtain t1 = 109 ≡ 10log10 18 (mod 19) = 18, and
similarly t2 ≡ 7 and t3 ≡ 14 mod 19. Finally, with the aid of Table 2 one determines t1/t2 = 18 · 11 ≡
8 (mod 19), t1/t3 ≡ 4 (mod 19) and t2/t3 ≡ 10 (mod 19). Thus the multiplicative consistent projection
Q3(M) of M onto M3 is equal to:

T =




1 18
7

18
14

7
18 1 7

14
14
18

14
7 1


 ≡




1 8 4
12 1 10
5 2 1


 (mod 19).

CONSISTENCY IN FINITE FIELDS F2m, m > 1

The concept of consistent approximation can be generalized for all finite fields, extending the above
setting derived to the fields K = Z∗

p of remainders modulo a prime number p. In doing so, it is sufficient
to establish formulae analogous to those presented in Theorem 2. Since each finite field is homeomorphic
to a field Fpm for some prime p and integer m ≥ 1, we restrict our attention only to the most important in
the computer design fields F2m of characteristic two, for which the multiplicative groups F∗

2m = F2m \ {0}
of order N = 2m − 1 are cyclic. The general case of p > 2 and m > 2, can be treated in a similar, though
slightly more complicated manner.
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In order to introduce the mentioned above generalization, it is assumed that:

wm(x) = xm +

m−1∑
i=0

ωix
i, ωi ∈ {0, 1},

is the primitive polynomial of degree m in the ring Z2[x] of all polynomials of variable x with coefficients
in the field Z2, which means that the following two conditions are satisfied:

1. wm(x) has no divisors in Z2[x] of positive degrees;

2. k = 2m − 1 is the smallest integer such that wm(x) divides xk − 1.

Because of the importance of primitive polynomials wm(x) in applied cryptography, they are listed in
the monograph [19] for every m = 1, 2, . . . , 229. Moreover, if 2m − 1 is a Mersenne prime, then it is done
for m less or equal to 44497. We notice that all primitive polynomials wm(x) over Z2 have the form similar
to:

x4 + x+ 1, x7 + x+ 1, x31 + x3 + 1, x64 + x4 + x3 + x+ 1.

The finite field F2m = (F2m ,+, ·) can then be represented as Z2[x]/wm(x) defining the set of all
polynomials over Z2 modulo wm(x) with the polynomial β = x forming a generator of F∗

2m . The sum
p(x) + q(x) of any two polynomials of degree at most m− 1,

p(x) =
m−1∑
i=0

aix
i and g(x) =

m−1∑
i=0

bix
i,

has the respective coefficients equal to (ai+bi) (mod 2), while the product p(x)·g(x) is equal to a remainder
of dividing the following polynomial

p(x)g(x) =

2m−2∑
i=0

(( i∑
j=0

ajbi−j

)
(mod 2)

)
xi,

by wm(x). Here ak and bk are taken to be zero if k < 0 or k ≥ m.
Taking into account the latter, one can identify the field F2m with the set of all binary numbers of the

form:

a = (am−1 . . . a0) =

m−1∑
i=0

ai2
i, ai ∈ {0, 1},

under vector operations of addition and multiplication introduced above. Hence members of F2m have
three different representations: a polynomial, a binary and a decimal one. For example, the standard
generator β = x of the cyclic group F∗

2m = F2m \ {0} and the primitive polynomial wm = wm(x) can be
represented as follows:

β = x = (0 . . . 0︸ ︷︷ ︸
m−2

10) = 2

and

wm = xm +

m−1∑
i=0

ωix
i = (1ωm−1 . . . ω0) = 2m +

m−1∑
i=0

ωi2
i.

Corollary 1. It is convenient to represent the polynomials wm(x) and p(x) in a computer as the binary
numbers of length 2m:

wm = (0 . . . 01︸ ︷︷ ︸
m

ωm−1 . . . ω0), a = (0 . . . 0︸ ︷︷ ︸
m

am−1 . . . a0).

Then coefficients of the product p(x)q(x) can be determined by a fast algorithm based on the formula
F−1(F (a) ·F (b)), where F : Z2m

2 → Z2m
2 is the discrete Fourier transform and the multiplication F (a) ·F (b)

is understood coordinate-wise [18]. In addition, the inverses and discrete logarithms of elements in F∗
2m =

F2m \ {0} can be computed by the fast extended Euclidean and square-and-multiply polynomial algorithms
[19].
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Example 6. The polynomial w4(x) = x4 + x + 1 is primitive over Z2. Hence the field F24 = Z2[x]/w4(x)
includes 15 polynomials of the form

βk = a3x
3 + a2x

2 + a1x+ a0, k = 0, 1, . . . , 14,

where β = x is a generator in F∗
24 . Using the decimal notation of F24 ,

a = (a3a2a1a0) = 8a3 + 4a2 + 2a1 + a0 ∈ Z15,

one can list the logarithms and inverses of these polynomials in Table 3.

Table 3. Discrete logarithms and inverses of elements a ∈ F∗
24 with respect to the generator

β = x = (0010) = 2.

k = logβ a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a = βk 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9

a−1 1 9 13 15 14 7 10 5 11 12 6 3 8 4 2

In the next step a theorem on the weighted consistent approximation in the field Fq of order q = 2m is
established and is illustrated by a carefully chosen example. For the simplicity the binary representations
a = (am−1 . . . a0) of the members p(x) =

∑m−1
i=0 aix

i of Fq are used. Moreover, we recall that matrices in
An and Mn have now entries in the additive and multiplicative consistent groups Zq−1 and F∗

q .

Theorem 3. Let β = x = (0 . . . 010) be the generator of the group F∗
q for q = 2m, and let ϕ(a) = logβ a

denote the discrete logarithm of a ∈ F∗
q to the base β. If (�i)

n
i=1 are non-zero weights in Zq−1 such that

n∑
i=1

�i ≡ 1 (mod (q − 1)),

then ingredients T = [ti/tj ]
n
i,j=1 ∈ Mn and S = [si − sj ]

n
i,j=1 ∈ An of the consistent projections

Pn(logβ M) = S and Qn(M) = T = βS ∈ Mn satisfy the following formulae:

si =

n∑
j=1

�j logβ mij ∈ Zq−1 and ti = βsi =

n∏
j=1

(mij)
�j ∈ F∗

q ,

for every PC matrix M = [mij ] ∈ Mn×n with the entries in F∗
q .

Proof. Since we have
logβ(a · b) = (logβ a+ logβ b) (mod (q − 1))

and
logβ(a

x) = x logβ a (mod (q − 1)), x ∈ Zq−1,

we can set ϕ(a) = logβ a and K+ = F∗
q in Definition 2 to derive the first formula. The latter directly yields

the second formula, as we have:

βsi = β
∑n

j=1 logβ((mij)
�j ) =

n∏
j=1

(mij)
�j ,

which in turn combined with Lemma 2 completes the proof.

Example 7. Suppose that q = 24, w4(x) = x4 + x + 1 and K = F24 = Z2[x]/w4(x). In addition, consider
the matrix M ∈ K3×3 of the form:

M =



1 1 2
1 1 1
9 1 1


 .
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Since x · (x3 + 1) ≡ 1 (modw4(x)) and 1 · 1 �= 2 it follows that M is reciprocal, but not consistent. Take
now �1 = �3 = 4, �2 = 8 in Z15 and determine the additive and multiplicative consistent projections:

P3(logβ M) = S = [si − sj ] and Q3(M) = T = [ti/tj ] = βS .

For this purpose, we apply Theorem 2 and Table 3 in order to obtain:

s1 = 4 logβ 2 ≡ 4 (mod 15), s2 = 0, s3 = 4 logβ 9 = 96 ≡ 1 (mod 15),

s1 − s2 = 4, s1 − s3 = 3, s2 − s3 = −1 ≡ 14 (mod 15).

Moreover, with the aid of decimal notation one concludes that polynomials ti = βsi , ti/tj ∈ F∗
24 are equal

to:

t1 = β4 = 3, t2 = β0 = 1, t3 = β1 = 2, t1/t2 = 3,

t1/t3 = 3 · 2−1 = 3 · 9 = 7, t2/t3 = 2−1 = 9,

where product 3 · 9 = (0011) · (1001) are computed according to:

(x+ 1)(x3 + x) ≡ (x3 + x2 + 1) (modw4(x)) = (0111) = 7.

Finally, consistent projections of the matrix M are equal to:

P3(logβ M) =




0 4 3
11 0 14
12 1 0




and

Q3(M) =



1 3

1
3
2

1
3 1 1

2
2
3

2
1 1


 ≡




1 3 7
14 1 9
6 2 1


 (modw4(x)).

AN EXTENTION OF CONSISTENT PROJECTION

In Abstract Consistent Projections section the consistent projections Qn : Mn×n(K) → Mn(K) for all
reciprocal matrices with entries in K are defined. It is of considerable interest and particular importance
that their range Mn×n(K) can be extended to the set of all K – valued matrices, at least when K = F∗

q

with q = 2m. For this purpose, let β = x = (0 . . . 010) and Kn×n(K) denote the generator of F∗
q = Fq \ {0}

and the set of all matrices M = [mij ] with entries in F∗
q , respectively. Moreover, suppose that (�i)

n
i=1 are

non-zero weights in Zq−1 such that:
n∑

i=1

�i ≡ 1 (mod (q − 1)).

Theorem 4. Let Q̂n : Kn×n(K) → Mn(K) be a consistent mapping defined by the following formula:

Q̂n(M) = βPn(logβ

√
M̂) = [ti/tj ],

where M = [mij ], M̂ =
[mij

mji

]
, Pn(logβ

√
M̂) = [si − sj ], ti = βsi and

si = 2m−1
n∑

j=1

�j logβ
mij

mji
, i = 1, 2, . . . , n.

Then Q̂n = Q̂2
n is an extension of the consistent projection Qn : Mn×n(K) → Mn(K) to the range Kn×n(K).
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Proof. Observe that each element a ∈ F2m has exactly one square root, namely
√
a = a2

m−1

. Consequently,
by Remark 3 we arrive at:

logβ

√
M̂ = 2m−1

[
logβ

mij

mji

]n
i,j=1

and

√
mij

mji

√
mji

mij
= 1.

Thus one can apply Theorem 3 to the reciprocal matrix
√

M̂ in order to obtain the formulae for ti and
si. Furthermore, if M = [mij ] ∈ Mn×n, then conditions mijmji = 1 of reciprocity and Fermat’s theorem
yield: √

M̂ = [
√

m2
ij ] = [m2m

ij ] = [mij ] = M,

which renders Q̂n(M) = Qn(M) = M on Mn×n(K). Since each matrix T = [ti/tj ] is consistent, it follows
that:

Q̂2
n(M) = Q̂n(T ) = Qn(T ) = T = Q̂n(M),

for every M ∈ Kn×n(K). Hence Q̂n is a projection.

THE CASE OF ONE PARAMETER GROUPS

In this section we focus our attention on an extension of pairwise comparisons to the algebra B(H) of
all bounded linear operators from a complex Hilbert space H into H. For this purpose we recall that an
operator A ∈ B(H) is said to be positive if the following inner products satisfy

〈Ah, h〉 ≥ 0, for all h ∈ H.

The positivity of A is denoted by A ≥ 0. The notion of positivity enables to make the algebra B(H)
as well the algebra RB(H) of hermitian operators on H into ordered vector spaces in the usual way [17].

Furthermore, we recall that a function U : R → B(H) is said to be a (strongly) continuous one-
parameter unitary group if for all α and β in R we have:

(a) U(α) is a unitary operator,

(b) U(α+ β) = U(α)U(β),

(c) if h ∈ H, then U(α)h → U(β)h as α → β.

By the Stone’s Theorem (see [17]) the function U is a continuous one parameter unitary group if and
only if there is a self-adjoint operator A such that

U(α) = exp(iαA) or iαA = logU(α), α ∈ R.

This self-adjoint operator A is said to be infinitesimal operator of U . It may be unbounded and

Ah = lim
α→0

U(α)h− h

α
, h ∈ dom(A),

where linear manifold dom(A) is dense in H. It consists of all vectors h in H such that the limit exists.
Moreover, the operator iαA is antisymmetric for every α in R. Indeed, if f, g ∈ dom(A), then we have

〈iαAf, g〉 = iα 〈f,Ag〉 = −〈f, iαAg〉 .

Note that the subset K of B(H) defined by

K = U(R) = {U(α) : α ∈ R} = {exp(iαA) : α ∈ R}

is a multiplicative group with the identity and inverse equal to:

U(0) = 1 and U(−α) = U(α)−1.
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Hence one can apply our results from previous sections and derive formulae for multiplicative consistent
projections of a reciprocal matrix M = [mij ]n×n with entries in a one parameter unitary group K onto the
group Mn(K) of all multiplicatively consistent matrices T = [tkj ]n×n with entries in K = U(R):

tkj = U(αkj), k, j = 1, 2, . . . , n.

For this purpose, we have to construct first an auxiliary additive consistent projection of the antisymmetric
matrix logM = [logmkj ]n×n onto the group An(L) of all additively consistent matrices S = [skj ]n×n with
entries L = logU(R):

skj = logU(αkj) = iαkjA, k, j = 1, 2, . . . , n.

In the following theorem, each composition

U(α)U(β)−1 = U(α)U(−β)

of operators in K = U(R) will be written as a ratio U(α)/U(β).

Theorem 5. Let the multiplicative group K = U(R) be the range of a continuous one-parameter unitary
group U : R → B(H) such that U(α) = exp(iαA) for every real α, and let the additive group L be defined
by

L = logU(R) = {iαA : α ∈ R},

where A is infinitesimal generator of U . If (ρi)
n
i=1 are positive weights such that

∑n
i=1 ρi = 1, then

ingredients of the consistent projections

Qn(M) = [tk/tj ] ∈ Mn(K) and Pn(logM) = [sk − sj ] ∈ An(L)

satisfy the formulae

tk = exp sk and sk =

n∑
j=1

ρj logU(αkj) = iA

n∑
j=1

ρjαkj ,

for every reciprocal matrix M of the form

M = [mkj ] = [U(αkj)] ∈ Mn×n(K).

Proof. As in the proof of Theorem 2 we apply Definition 2 and Lemma 2 with the abstract logarithm
defined by

ϕ(M) = logM = [iαkjA]n×n.

CONCLUSIONS

A study of groups permitting an effective and unified design of weighted projections of abstract recip-
rocal matrices onto consistent matrices is addressed within the theory of pairwise comparisons. It is shown
that this is possible for pairs of multiplicative and additive groups, which are mutually logarithmically
homeomorphic. It means that the group of multiplicative type is mapped onto the group of additive type
by an abstract logarithm function.

In this paper we have focused our attention mainly on consistent additive and multiplicative projections
not only for the discrete modular groups Z∗

p and F∗
2m but also for one parameter unitary groups in the

algebra of all bounded linear operators from a Hilbert space into itself. It has been partially motivated by
several applications of these groups in computer sciences, applied mathematics, cryptography and others.
By the same reasons it would be of interest to develop pairwise comparisons in other classes of groups, in
particular elliptic groups, i.e., groups of rational points on elliptic curves. Finally, we note that another
important motivation of study of pairwise comparisons in an abstract setting comes from the field of
computer science priority theory.
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